
CPM: A Core Model for Product Data

Steven J. Fenves1, Sebti Foufou2, Conrad Bock and Ram D. Sriram
Manufacturing Systems Integration Division,

National Institute of Standards and Technology
Gaithersburg, MD 20899-8263

{sfenves, sfoufou, cbock, sriram}@cme.nist.gov

Abstract: The support of PLM throughout the product life, from the product’s
conceptualization to its disposal, requires reliable, complete and efficient data models.
The Core Product Model (CPM), initially developed at NIST for a number of in-house
research projects, has been extended so as to support the full range of PLM information.

CPM gives equal status to three aspects of a product or artifact: its function, form and
behavior. Thus, CPM can support purely functional reasoning about a product in the
conceptual stages of design as well as the recording and modeling of its behavior in the
post-design stage.

CPM is a generic, abstract model with generic semantics. It is defined as a UML class
diagram.. Three levels of CPM models, denoted as the conceptual, intermediate, and
implementation models, are described. Extensions of CPM are briefly presented and a
short illustrative example is given.

Keywords: Product data representation, function, form, behavior, PLM,
UML class diagrams.

1 Introduction

The new generation of product modeling concepts and applications is intended to support
Product Lifecycle Management (PLM) by providing support for product data creation,
use, storage and communication during all stages of product life, from the product’s first
conceptualization to its disposal.

To succeed in the mission of supporting PLM, applications need reliable, complete and
efficient data models. In a PLM environment, actors are submerged in a heterogeneous
and voluminous information flow. It is paramount to be able to: (i) filter this information;
(ii) structure it; (iii) integrate and control it; and (iv) channel it so that actors receive and
manipulate only information pertinent for their task. The correct performance of these
four activities can not be ensured without a reliable product data model.

The initial objectives of the work presented was to provide a common data model among
four in-house research and development projects at NIST as well as a base-level data

1 University Professor Emeritus, Carnegie Mellon University and Guest Researcher, NIST
2 LE2i Laboratory, University of Burgundy, B.P. 47870, Dijon, France, and Guest Researcher, NIST

CPM: A Core Model for Product Data

representation for a multilevel design information flow model [1; 2]. The first version of
the Core Product Model (CPM) responding to these objectives was presented in [3].

As interest in PLM intensified, it became increasingly clear that CPM possesses some of
the key characteristics needed to support the full range of PLM information. The
objective therefore became to expand the CPM to serve as the basic, top-level model for
all product realization information [2].

2 The Core Product Model

2.1 Overview

CPM is a generic, abstract model with generic semantics. Semantics meaningful for any
particular domain are to be embedded within an implementation model and the policy of
use of that model.

CPM is based on two principles. First, the key object in the CPM is the artifact. Artifact
represents a distinct entity in a product, whether that entity is a component, part,
subassembly or assembly. Second, the artifact is an aggregation of three objects
representing the artifact’s three principal aspects:

• the artifact’s function describes what the artifact is supposed to do. The artifact

satisfies customer needs and/or engineering requirements largely through its function.
The term function is often used synonymously with the term intended behavior.

• the artifact’s form represents the proposed design solution for the design problem
specified by the function. The artifact’s physical characteristics are modeled in CPM
in terms of its geometry and material, because many of the intended applications tend
to treat these two aspects differently.

• the artifact’s behavior describes how the artifact’s form implements its function.
Behavior is governed by engineering principles which are incorporated into a
behavioral or causal model. Application of the behavioral model to the artifact
describes or simulates the artifact’s observed behavior. The observed behavior can
then be examined with respect to the requirements to yield the evaluated behavior.

The suitability of CPM for supporting the product information needs over the full range
of PLM activities is due to the above three-way partition of a product’s aspects:

• in the early conceptual stages of design, when the product’s form has not yet been

selected, the function aspect supports reasoning about the requirements on the product
and the allocation of the expected functions of the product; and

• in the post-design stages of manufacturing, operation, and maintenance - when the
form of the artifact is unchanged - its behavior (such as manufacturability,
operatability, cost or durability) can be modeled, observed, evaluated and recorded in
the behavior aspect.

2

CPM: A Core Model for Product Data

2.2 Components of CPM

CPM consists of two sets of classes, called object and relationship classes, patterned after
the Entity-Relationship model [4], equivalent to the Unified Modeling Language (UML)
classes and association classes, respectively [5]. A UML class diagram of CPM is shown
in Figure 1. In order to provide a clearer exposition, selected portions of Figure 1 are
presented separately in Figures 2 through 5.

EntityAssociation

Constraint

Port

Usage

CommonCoreRelationship

Trace

CommonCoreObject

0..1

0..*

+associatedCCO
0..1

+ccRelationship
0..*

CoreEntity

0..*

0..*

+associatedEntity
0..*

+entityAssociation

0..*

{or} {or}

CoreProperty

1

0..*

+constrainedProperty

1

+constraint
0..*

Requirement

0..* 0..*

+requiredProperty

0..*

+hasRequirement

0..*

Geometry Material

Behavior
Specification1

1..* +containedIn

1+decomposedInto
1..*

Feature

Function
0..*

0..1

+featureHasFunction

0..*

+functionOfFeature
0..1

Form

1..*
1+hasGeometry

1..*

+geometryOfForm

1
1..* 1

+hasMaterial
1..*

+materialOfForm
1

0..*

0..1

+featureHasForm

0..*

+formOfFeature

0..1

TransferFunction

Artifact

0..*

0..1

+subArtifact0..*

+subArtifactOf
0..1

0..*

1

+hasBehavior
0..*

+BehaviorOfArtifact
1

1..*

1

+specifies1..*

+satisfies
1

10..* +featureOfArtifact 1
+hasFeature
0..*

0..*

0..1

+hasFunction

0..*

+functionOfArtifact

0..1

0..*

0..1

+hasForm

0..*

+formOfArtifact

0..1

Flow

0..*

1
+inputFlow
0..*

+sourceOf
1

0..*

1

+ouputFlow

0..*

+destinationOf

1

0..*

1

+hasInputFlow

0..*

+isSourceOf
1 1

0..*

+isDestinationOf

1

+hasOutputFlow

0..*

CoreProductModel

Figure 1. UML class diagram of the Core Product Model

In the text that follows, names of classes are capitalized (e.g., Information) and names of
attributes are not (e.g., information).

2.2.1 Abstract classes

There are five abstract classes (classes with no instances):

• CoreProductModel represents the highest level of generalization.

3

CPM: A Core Model for Product Data

• CommonCoreRelationship is the base class for all association classes.
• CommonCoreObject is the base class for all object classes.
• CoreEntity is the base class from which Artifact and Feature are specialized.
• CoreProperty is the base class from which Function, Flow, Form, Geometry and

Material are specialized.
Figure 2 shows the abstract classes.

CommonCoreRelationship CoreEntityCoreProperty

CoreProductModel

CommonCoreObject

1

1..*

+RelatedCommonCoreObject 1

+CommonCoreObject
1..*

Figure 2. CPM abstract classes

2.2.2 Object classes

There are eleven object classes:

• Artifact represents a distinct entity in a product, whether that entity is a component,

part, subassembly or assembly.
• Feature is a portion of the artifact’s form that has some specific function. An artifact

may have design features, analysis features, manufacturing features, etc., as
determined by their respective functions. Feature has its own containment hierarchy,
so that compound features can be created out of other features (but not artifacts).

• Port is a specialization of Feature, sometimes referred to as an interface feature,
through which the artifact is connected to (or interfaced with) other artifacts.

• Function is what the artifact is supposed to do, that is, its intended behavior.
• TransferFunction is a specialized form of Function involving the transfer or

transformation of an input flow into an output flow.
• Form of the artifact is the proposed design solution for the design problem specified

by the function, represented in terms of its geometry and material.
• Geometry is the spatial description of the artifact.
• Material is the description of the internal composition of the artifact.
• Flow is the medium (fluid, energy, message stream, etc.) that serves as the output of

one or more transfer function(s) and the input of one or more other transfer
function(s). A flow is also identified by its source and destination artifacts.

• Behavior describes how the artifact’s form implements its function. Behavior has
three specialized attributes:
− the behavioralModel;

4

CPM: A Core Model for Product Data

− the observedBehavior; and
− the evaluatedBehavior.

• Specification represents the collection of information relevant to the design of an
artifact deriving from customer needs and/or engineering requirements.

• Requirement is a specific element of the Specification that governs some aspect of the
artifact’s function or form. Requirements cannot apply to behavior, which is strictly
determined by the behavioral model.

Figure 3 provides a view of the object classes.

Port

CommonCoreObject

CoreEntityCoreProperty Requirement

Geometry Material

Behav ior Specif ication

Feature

FunctionForm

Transf erFunction

Artif act

0..*

0..1

+subArtif acts
0..*

+subArtif actOf

0..1

Flow

Figure 3. CPM object classes

2.2.3 Relationship classes

There are four relationship classes:

• Constraint is a specific shared property of a set of entities that must hold in all cases.

In CPM, only the entity instances that constitute the constrained set are identified.
• EntityAssociation is a set membership relationship among artifacts, features and ports.
• Usage is a mapping from CommonCoreObject to CommonCoreObject, particularly

useful when constraints apply to the specific “target” entity but not to the generic
“source” entity, or when the source entity resides in an external catalog or design
repository.

• Trace is structurally identical to Usage, particularly useful when the “target” entity in
the current product description depends in some way on a “source” entity in another
product description. The type attribute of Trace specifies the nature of the dependence
(alternative_of, version_of, derived_from, is_based_on, etc.).

5

CPM: A Core Model for Product Data

Relationship classes are shown in Figure 4.

Entity Association Constraint Usage

CommonCoreRelationship

Trace

Figure 4. CPM relationship classes
The relationships between object classes are shown in Figure 5.

Entity Association

Constraint

Usage

CommonCoreRelationship

Trace

CommonCoreObject

1

1..*

+RelatedCommonCoreObject
1

+CommonCoreObject
1..*

CoreEntity

0..*

0..*

+associatedEntity0..*

+entity

0..*

CoreProperty

1

1..*

+constrainedProperty

1

+property
1..*

RequirementBehav ior Specif ication

CoreProductModel

Figure 5. Relationships between object classes

2.2.4 Utility classes

There are three utility classes:

• Information is a container consisting of:

− a textual description slot;
− a textual documentation string (e. g., a file path or URL referencing more

substantial documentation); and
− a properties slot that contains a set of attribute-value pairs stored as a string.

• ProcessInformation is a container for attributes related to the product development
process, such as state and level, as used in [1], alternative and/or version designation
or other process descriptors.

• Rationale records explanatory information on the reasons for or justifications of a
particular decision concerning the artifact.

6

CPM: A Core Model for Product Data

The utility classes are of primary interest in intermediate information models generated
from the conceptual CPM, as discussed in Section 4.2.

2.3 Associations and aggregations

The following associations are provided:

• all object classes except Flow have their own separate, independent decomposition

hierarchies, also known as “partOf” relationships or containment hierarchies3.
• there are associations between:

− a Specification and the Artifact that results from it;
− a Flow and its source and destination Artifacts and its input and output Functions;

and
− an Artifact and its Features.

• most importantly, four aggregations are fundamental to the CPM:
− Function, Form and Behavior aggregate into Artifact;
− Function and Form aggregate into Feature;
− Geometry and Material aggregate into Form; and
− Requirements aggregate into Specification.

3 CPM models

CPM models exist at three levels, denoted as the conceptual, intermediate, and
implementation models, described below.

3.1 Conceptual model

CPM is conceived as a conceptual model without domain-specific semantics. Thus, CPM
is limited to attributes required to capture generic product information and to create
relationships among the classes. CPM intentionally excludes attributes that are domain-
specific (e.g., attributes of mechanical or electronic devices) or object-specific (e.g.,
attributes specific to function, form or behavior).

3.2 Intermediate model

In order to make the conceptual CPM directly usable, two generic information modeling
concepts have been adopted so as to be able to create intermediate models.

First, each object and relationship has an Information attribute, described in Section 2.2.4.
The attribute of interest here is the properties slot, where attribute-value pairs record all
domain- or object-specific attributes.

3 For clarity, only the subArtifact/subArtifactOf containment hierarchy of Artifact is labeled in Figures 1 and 3.

7

CPM: A Core Model for Product Data

Second, each object and relationship, except for the abstract and utility classes, has an
attribute called type, the value of which is a string that acts as a symbolic classifier4. Each
object and relationship class may have a distinct hierarchical taxonomy of terms
associated with that class. The value of the type attribute corresponds to one of the terms
within the taxonomy for the given class. For example, “convert” is one of numerous types
of transfer functions and the term can serve as the value of the type attribute of an
instance of the class.

Using the above two modeling concepts, an artifact instance of type “pin” with specified
length and diameter attribute values is represented in the intermediate model as shown in
Figure 6.

: Information

properties = "length 5.00 diameter 0.50"

: Artifact
type = "Pin" +information

: Information
properties = "length 5.00 diameter 0.50"

: Artifact
type = "Pin" +information

Figure 6. A CPM instance with attributes and values
Such a representation will generally be appropriate and sufficient either for the early
conceptual phases of design of an artifact, where typically there is a small number of
instances and few attributes of interest for each instance, or for design repositories, where
only condensed representations of completed design are stored5. Over time, as
intermediate models are built up, object and relationship classes in the model may acquire
their individual generic engineering classification hierarchies. Eventually, these
taxonomies may be expanded into full ontologies of the terms and their semantic
relationships. However, this intermediate model will not scale to a full implementation,
where thousands of instances may occur, each with a long list of application-specific
attributes.

3.3 Implementation models

For application to industrial-scale systems, the conceptual model of CPM must be
translated into an implementation model. This is called model compilation and is a part
of the overall Model-Driven Architecture (MDA) defined by the Object Management
Group (OMG) [9]. MDA provides for translation of Platform-Independent Models
(PIMs), such as CPM, to Platform-Specific Models (PSMs) and for the generation of
efficient implementation languages.

Implementations based on CPM may use the various type attributes, their underlying
taxonomies and the attribute-value pairs stored in the entities’ properties slots to provide
the means for model compilation of domain-specific specializations of the CPM classes.
Specifically, the model compiler would:

4 The semantics of the term type used in this report differs from that of the term “data type” commonly used in computer

science data structure definitions. The use of the term type in this report is consistent with the definition used in the FRISCO report:
“Type (Synonym: 'Category'): A type of things is a specific characterisation (e.g. a predicate) applying to all things of that type” [6]

5 The NIST Design Repository [7], using a product model closely based on CPM, contains some fairly substantial designs, such
as the complete record of the Charters of Freedom enclosures built at NIST [8].

8

CPM: A Core Model for Product Data

• create subclasses of Artifact from the classification hierarchy in the type slot; and
• define attributes on the subclasses from the attribute names in the properties slot.

These subclasses could be generated into a UML repository [10], as a PIM, then into a
compilable language. This provides flexibility in choosing an implementation language.

Finally, model compilation may be used to translate CPM's delegation-style of reusing
designs to the type/instance style of computational modeling. CPM uses Artifact for the
representation of the information at three different stages in the lifecycle of an artifact:

• description of classes of physical objects, for example, the design of a particular kind

of gear box;
• use of the above descriptions in composing designs for other physical objects, for

example, the use of a particular gear box design in the description of a certain model
of car; and

• descriptions of physical objects conforming to the designs above, for example,
maintenance record for an individual physical gear box, with serial number 3463,
installed in a particular car with VIN number 92345645.

The use of Artifact for all three reflects the engineer's viewpoint that they represent
different stages in the lifecycle of the same artifact. Each stage may have different
attribute values and even different attributes. These stages are differentiated by different
values in the instances of the ProcessInformation class and related by the Usage
association in CPM. Computational models, on the other hand, usually have distinct
elements for each of the above stages, called type (or class), usage (or role), and
instance.6 These reflect common information system construction practices of using
program development environments to define the shapes of data structures (types, stage
1), and monitoring the execution of those programs in a separate debugging environment
to find the actual data stored in those structures (instances, stage 3). Modern modeling
techniques introduce usages or roles to more reliably compose designs (usages, stage 2)
[12]. Model compilers can bridge the engineering and computational viewpoints by
storing the rules by which the three stages are distinguished in the engineering model,
using these to categorize artifacts, and generate the corresponding computational models.

4 Extensions of the CPM

The following extensions to the CPM have been reported:

• the Open Assembly Model (OAM) provides a standard representation and exchange

protocol for assemblies [13-15]. The assembly model defines both a system level
conceptual model and the associated hierarchical relationships. The model provides a
way for tolerance representation and propagation, kinematics representation, and
engineering analysis at the system level.

6 Some computational models use one element as CPM does, but distinguish the three stages by a special attribute, for example,

MOOD in the Health Level 7 Reference Information Model [11].

9

CPM: A Core Model for Product Data

• the Product Semantic Representation Language (PSRL) utilizes CPM for the
development of a formal representation of product information [16]. Formal
description logic (OWL) is used to encode the PSRL.

• the Design-Analysis Integration project proposes a conceptual data architecture that
can provide tighter integration of spatial and functional design and support analysis-
driven design and opportunistic analysis [17]. CPM serves as the organizing principle
of the Master Model from which discipline-specific functional models (views) are
idealized.

• the Product Family Evolution Model extends CPM to the representation of the
evolution of product families and of the rationale of the changes involved [18]. The
model represents the independent evolution of products and components through
families, series and versions, and the rationale for the changes.

• the Heterogeneous Material Model extends CPM to components with continuously
varying material properties [19]. Distance fields are associated with a set of material
features, where values and rates of material properties are specified.

• the Mechatronic Device Model is a framework supporting the conceptual design of
multiple interaction-state mechatronic devices, where the interactions between the
use-environment and the device can have different qualitative structures [20]. Devices
within a state are modeled by extensions of CPM.

• the Embedded System Model is feature-based approach to the co-design of
hardware and software in embedded systems [21]. The approach defines extensions to
CPM providing a representation for the embedded system feature model.

Extensions and implementations of CPM may explicitly assign attributes to
specializations of the CPM objects and relationships so as to provide interoperability with
new systems, legacy data models such as STEP, or existing CAD programs.

5. Illustrative example

The planetary gear system example considered in this section was presented in detail in
[14], where it was used to illustrate the representation of both the Artifact containment
hierarchy and the assembly associations comprising the Open Assembly Model. Our
interest here is to show how CPM captures design information about a product; thus, only
data important from the design point of view are modeled.

Figure 7 shows the components of the planetary gear system (PGS): the main artifact is
the planetary gear; it is composed of 13 subartifacts: the output housing, the input
housing, the ring gear, the sun gear, the planet gear carrier and eight screws. Information
pertaining to the function, form, behavior and specification related to these subartifacts is
not presented here.

10

CPM: A Core Model for Product Data

• ••

8 Screws Output
Housing

Input Housing Ring Gear Sun Gear Planet Gear
Carrier

Planetary Gear

Figure 7. The planetary gear system
Figure 8 shows an instance diagram for the representation of the gear system in CPM.
The figure shows only the structure of the PGS as an instance of the Artifact class. This
instance is linked through subArtifact relationships to a set of other instances representing
the subartifacts of the PGS. The figure also shows instances of the Function, Form,
Behavior, Specification, and Feature classes. The contents and values of the attributes of
these instances are not shown.

planetaryGearSystem : Art ifact

pgsBehavior : Behavior

changeSpeedRot : Function

pgsSpecif : Specification

form : Form

fasteningHoles : Feature

planetGearCarrier : Artifact

sunGear : Artifact

ringGear : Artifact

inputHousing : Artifact

outputHousing : Artifact

screw : Artifact

outputShaftHole : Feature

geo : Geometry

fun : Funct ioncyl : Form

mat : Material

hasMaterial

featureHasForm

formOfFeature

geometryOfForm

hasFunction

hasForm

formOfArtifact

featureHasFunction

functionOfFeature

materialOfForm

hasGeometry

functionOfArtifact

subArtifactOf

subArtifact

specifies

satisfieshasBehavior

behaviorOfArtifact

Figure 8. CPM instance diagram for the planetary gear system

6. Related work

CPM follows the tradition of work in the area of artifact representation. The division of
artifact information into the categories of form, function, and behavior has its roots in
earlier work in intelligent design systems. The model is most directly descended from the
representation developed as part of the NIST Design Repository project [7].

The MOKA project shares the motivation of the CPM [22]. MOKA exploits STEP, KIF
and other DARPA-related efforts to create an integrated product model for knowledge

11

CPM: A Core Model for Product Data

based engineering. The MOKA modeling language (MML), based on UML, is designed
to represent engineering design knowledge at a user level for deployment in KBE
applications. MOKA goes one step further than CPM towards the implementation models
discussed in Section 4.3 by using the MOCA metamodel as the prototype of domain-
specific application models. The MOKA Product Model supports five distinct views of a
product:
• Structure defines the hierarchical decomposition of a product’s structure into parts,

assemblies, and features. Structure can be physical, logical or conceptual at any stage
of design;

• Function defines the functional decomposition of the product and principles of
solution;

• Behavior includes a state model of the various states of a product and of the
transition from one state to another;

• Technology includes materials and manufacturing process information; and
• Representation includes any other user-defined technological information, including

alternate representations of the physical structure.

The similarly motivated Virtual Product Model is a comprehensive effort at developing
standards for different aspects of product modeling, including functional decomposition,
product data, design process information and other aspects of product development [23].

The IMPROVE project is a similar large scale effort in the area of process systems
engineering, where design process information models are integrated with process system
design information models [24].

7. Summary and conclusions

CPM is a generic, abstract model with generic semantics. It gives equal status to three
aspects of a product or artifact: its function, form and behavior. Thus, CPM can support:
(i) purely functional reasoning about a product in the conceptual stages of design; (ii)
recording and analysis of its behavior in the post-design stages; as well as (iii) the
“traditional” engineering design activities of generating the product’s form in response to
the specified function, evaluating the product’s behavior by analysis and simulation, and
modifying the form until the behavior satisfies the function.

At present, CPM exists as a conceptual model. Extensions at the same conceptual level
have illustrated that CPM is readily expandable, although some conflicts have been
detected (for example, in some domains features do have independent behavior, not
supported by CPM; in other domains, geometry and material are not the appropriate top-
level specializations of form). A few intermediate level models have been generated,
primarily for illustrative purposes.

The extent to which CPM can serve as the central information support mechanism for
PLM will be determined by the implementation models developed from the conceptual
CPM. As indicated in Section 3.3, an extension or application of Model-Driven
Architecture will be needed to provide both: (i) translation of platform-independent

12

CPM: A Core Model for Product Data

models to platform-specific models; and (ii) expansion of classes and their attributes from
the domain-independent CPM model to models for specific domains.

References

 1. Shooter, S. B., Keirouz, W. T., Szykman, S., and Fenves, S. J., "A Model for the

Flow of Design Information in Product Development," Engineering with Computers,
Vol. 16, 2000, pp. 178-194.

 2. Szykman, S., Fenves, S. J., Keirouz, W. T., and Shooter, S., "A foundation for
interoperability in next-generation product development systems," Computer-Aided
Design, Vol. 33, No. 7, 2001, pp. 545-559.

 3. Fenves, S. J., "A Core Product Model For Representing Design Information,"
National Institute of Standards and Technology, NISTIR 6736, Gaithersburg, MD
20899, USA, 2001.

 4. Chen, P. P., "The Entity-Relationship Model: Toward a Unified View of Data,"
ACM Transactions on Database Systems, Vol. 1, No. 1, 1976, pp. 9-36.

 5. Booch, G., Rumbaugh, J., and Jacobson, I., The United Modeling Language User
Guide, Addison-Wesley 1997.

 6. Verrijn-Stuart A A. FRISCO - A framework of information system concepts - The
Revised FRISCO Report (Draft January 2001), IFIP WG 8.1 Task group FRISCO.
2001.

 7. Szykman, S., Racz, J. W., Bochenek, C., and Sriram, R. D., "A Web-based
System for Design Artifact Modeling," Journal of Design Studies, Vol. 21, No. 2,
2000, pp. 145-165.

 8. Allen, R. H., Sriram, R. D., Szykman, S., and Fijol, R. J., "Representing the
Charters of Freedom Encasements in a Decision Repository: A Case Study,"
Pittsburgh, Pennsylvania, 2001.

 9. OMG. Model-Driven Architecture. 2004.

 10. Bock, C., "UML without Pictures," IEEE Software Special issue on Model-driven
Development, 2004.

 11. Health Level 7. HL7 Reference Model. 2004.

 12. OMG. UML 2.0 Superstructure Specification. 2003.

 13. Sudarsan, R., Baysal, M. M., Roy, U., Foufou, S., Bock, C., Fenves, S. J.,
Eswaran, E., Lyons, K. W., and Sriram, R. D., "Information Models for Product
Representation: Core and Assembly Models," NISTIR 7173, NIST, Gaithersburg,
MD 20899, Dec. 2004.

13

CPM: A Core Model for Product Data

 14. Sudarsan, R., Young-Hyun, H., Feng, S. C., Roy, U., Fujun W., Sriram, R. D., and
Lyons, K. W., "Object-oriented Representation of Electro-Mechanical Assemblies
Using UML," National Institute of Standards and Technology, NISTIR 7057,
Gaithersburg, MD 20899, USA, 2003.

 15. Sudarsan, R., Young-Hyun, H., Foufou, S., Feng, S. C., Roy, U., Fujun W., Sriram,
R. D., and Lyons, K. W., "A Model for Capturing Product Assembly Information ,"
to appear in Journal of Computing and Information Science in Engineering, 2005.

 16. Patil, L., Dutta, D., and Sriram, R. D., "Ontology-based Exchange of Product Data
Semantics," IEEE Transactions on Automation Science and Engineering, Vol. 2,
No. 3, 2005, pp. 213-255.

 17. Fenves, S. J., Choi, Y., Gurumoorthy, B., Mocko, G., and Sriram, R. D., "Master
Product Model for the Support of Tighter Design-Analysis Integration," National
Institute of Standards and Technology, Gaithersburg, MD 20899, NISTIR 7004,
2003.

 18. Wang, F., Fenves, S. J., Sudarsan, R., and Sriram, R. D., "Towards Modeling the
Evolution of Product Families," Proceedings of the 2003 ASME Design
Engineering Technical Conferences, Chicago, IL, 2003.

 19. Biswas, A., Fenves, S. J., Shapiro, V., and Sriram, R. D., "Representation of
Heterogeneous Material Properties in the Core Product Model, 2005.," Engineering
with Computers, 2005.

 20. Xu, C., Gupta, S. K., Yao, Z., Gruninger, M., and Sriram, R. D., "Toward Computer-
Aided Conceptual Design of Mechatronic Devices with Multiple Interaction-States,"
2005.

 21. Zha, X. F., Fenves, S. J., and Sriram, R. D., "A Feature-based Approach to
Embedded System Hardware and Software Co-Design," 2005.

 22. MOKA. MOKA: A Framework for structuring and representing engineering
knowledge. http://www.kbe.coventry.ac.uk/moka/miginfo.htm . 1999.

 23. Ingward, B., Falk, M., Edwin, S., and Erik, M.. Project iViP: Integrated Virtual
Product Creation - Final Report. Frank-Lothar, K, Trac, T, and Irich, A. 2002.
Organisation responsible for production and manufacturing technologies (PFT),
Research Centre Karlsruhe GmbH.

 24. Marquardt, W. and Nagl, M., "Workflow and Information Centered Support of
Design Processes," Computers & Chemical Engineering, Vol. 29, No. 1, 2004, pp.
65-82.

14

http://www.kbe.coventry.ac.uk/moka/miginfo.htm

	CPM: A Core Model for Product Data
	2.1 Overview
	2.2 Components of CPM
	2.2.1 Abstract classes
	
	2.2.2 Object classes
	
	2.2.3 Relationship classes
	
	2.2.4 Utility classes
	

	2.3 Associations and aggregations
	3.1 Conceptual model
	3.2 Intermediate model
	3.3 Implementation models

